Tablas y requisitos de presión de suministro Índice

SUPR-1	1.1 Índices de esfuerzo del buzo	SUPR-9	1.10 Tabla de presiones de suministro con una fuente		
SUPR-2	1.2 Uso de las tablas de suministro de baja presión		regulada de alta presión para reguladores 455		
SUPR-2	1.3 Índices de esfuerzo expresados como volumen respiratorio por minuto (VRM)*	SUPR-9	1.11 Tabla de presiones de suministro con una fuente regulada de alta presión para		
SUPR-3	1.4 Presiones de suministro desde la superficie para		reguladores de cascos KM Diamond		
	máscaras MOD-1	SUPR-10	1.12 Fórmula estándar de Kirby		
SUPR-3	1.5 Tabla de presiones de suministro con un compresor de baja presión para reguladores		Morgan para calcular la presión de suministro en superficie (método antiguo)		
	SuperFlow® y SuperFlow® 350	SUPR-10	1.12.1 Cálculo antiguo para la tabla de presiones		
SUPR-5	1.6 Tabla de presiones de suministro con una fuente regulada de alta presión para reguladores SuperFlow® y	SUPR-10	1.13 Tabla de flujo de contrapresión de escape del KM Diamond		
SUPR-5	SuperFlow® 350 1.7 Tabla de presiones de	SUPR-10	1.13.1 Sistema de contrapresión		
SUPK-S	suministro con un compresor de baja presión para reguladores REX®	SUPR-11	1.13.1.1 Funcionamiento del sistema de contrapresión de escape a la superficie		
SUPR-7	1.8 Tabla de presiones de suministro con una fuente	SUPR-11	1.13.1.2 Cómo calcular el esfuerzo respiratorio		
	regulada de alta presión para	SUPR-12	1.13.2 Instrucciones		
	reguladores REX®	SUPR-12	1.13.3 Abreviaturas y fórmulas		
SUPR-7	1.9 Tabla de presiones de suministro con un compresor de baja presión para reguladores 455 y de cascos KM Diamond	SUPR-13	1.13.4 Tabla		

Si usa un compresor de baja presión o un panel de control de superficie cuya presión de salida es de 220 psig (15,2 bar) o menos, consulte la tabla para compresor de baja presión correspondiente.

Verifique que el equipo pueda mantener estable la presión de salida en superficie que indica la tabla, a fin garantizar el suministro adecuado en profundidad. Si usa una consola de alta presión capaz de suministrar una presión mayor que 220 psig (15,2 bar), consulte la tabla correspondiente para una fuente regulada de alta presión.

1.1 Índices de esfuerzo del buzo

El índice de esfuerzo del buzo, también llamado volumen respiratorio por minuto (VRM) es, en esencia, la intensidad con la que respira el buzo. A medida que aumenta el esfuerzo físico del buzo, se acelera la velocidad de ventilación. Con una capacitación adecuada, el buzo aprende a no sobrepasar nunca su índice de esfuerzo más allá de un

esfuerzo respiratorio normal (en el rango de 30 a 50 VRM). Para ver estos valores en contexto, este es el índice de esfuerzo equivalente de una persona en buen estado físico al realizar actividades intensas:

 Nadar a un nudo (1,8 km/h):
 38 VRM

 Correr a 8 mph (13 km/h):
 50 VRM

Si un buzo llega a 55 VRM, se considera un índice de esfuerzo extremo. Muchos buzos en buen estado físico pueden mantener un índice de 75 VRM de uno a dos minutos, siempre y cuando la resistencia del sistema de respiración al esfuerzo de inhalación no sea mucho mayor que 1 a 1,3 J/l. El índice de esfuerzo nunca debe llegar al punto en que el buzo no pueda mantener una conversación normal con el personal en la superficie.

Cuando el índice de esfuerzo alcanza el rango de 40 a 50 VRM (una actividad de moderada e intensa), el buzo DEBE descansar.

Evite a toda costa exigirse hasta el punto de perder el aliento.

Un esfuerzo mayor que 58 VRM bajo el agua se considera una situación extrema y peligrosa en comparación con realizar el mismo tipo de esfuerzo en la superficie. Bajo el agua, la densidad del gas respirable y la resistencia del equipo aumentan el esfuerzo de inhalación y exhalación. La mayor resistencia para respirar puede provocar un aumento del nivel de CO_2 en la sangre, debido a que el buzo no puede ventilar con la misma facilidad que en la superficie. Al respirar aire a mayores profundidades, la narcosis por nitrógeno puede ocultar los síntomas de la acumulación de CO_2 , lo que a su vez puede causar una respiración más forzada todavía. En consecuencia, el buzo suele experimentar confusión, pánico y, excepcionalmente, espasmos musculares y desmayo, que a veces causan la muerte. En casos aislados, se ha sospechado que un índice alto de ventilación podría haber sido la causa de barotraumas respiratorios, incluso de embolias arteriales gaseosas. Los buzos que fuman, que tienen una enfermedad pulmonar o daños al sistema respiratorio conocidos o desconocidos podrían tener mayores posibilidades de sufrir una sobreexpansión pulmonar si mantienen un índice de esfuerzo alto bajo el agua. El método de trabajo más seguro es mantener el equipo en perfecto estado de funcionamiento y conocer y comprender las capacidades y limitaciones de dicho equipo y de todos los sistemas de suministro de aire respirable que se utilicen.

Todos los usuarios del sistema de suministro y de los umbilicales deben conocer su capacidad de salida; además, el equipo se debe someter a pruebas de forma periódica para garantizar su capacidad de entregar el caudal necesario.

1.2 Uso de las tablas de suministro de baja presión

Las tablas de suministro de baja presión sirven para simplificar el cálculo de la presión de suministro. Para que el buzo reciba el volumen necesario, se debe suministrar la presión en superficie correcta. La tabla comienza con 90 psig (6,2 bar) y aumenta 10 psig (0,69 bar) en cada entrada. El usuario simplemente debe seleccionar la menor presión que esté más cerca del valor mínimo del compresor que utilice. En esencia, la tabla muestra la profundidad máxima que se puede alcanzar con diferentes índices de VRM (volumen respiratorio por minuto). Recomendamos firmemente que utilice una presión mínima de suministro que permita al buzo realizar actividades con un esfuerzo de hasta al menos 50 a 62.5 VRM.

1.3 Índices de esfuerzo expresados como volumen respiratorio por minuto (VRM)*

Intensidad del VRM trabajo		Pies cúbicos por minuto (CFM)	Ejercicio equivalente en tierra					
Reposo	7-10 VRM	0,2-0,35 CFM						
Trabajo ligero	10-20 VRM	0,35-0,7 CFM	Caminar a 2 mph (3,2 km/h)					
Trabajo moderado	20-37 VRM	0,7-1,3 CFM	Caminar a 4 mph (6,4 km/h)					
Trabajo intenso	37-54 VRM	1,3-1,9 CFM	Correr a 8 mph (13 km/h)					
Trabajo muy intenso	55-100 VRM	1,94-3,5 CFM						
* Fuente: Manual de I	* Fuente: Manual de Buceo de la Marina de los EE. UU.							

1.4 Presiones de suministro desde la superficie para máscaras MOD-1

Una presión de suministro adecuada es importante para garantizar el mejor rendimiento posible de respiración. Estas presiones de suministro mínimas y máximas recomendadas permiten un índice de esfuerzo respiratorio de al menos 75 VRM en todas las profundidades indicadas.

Profundidad		Presión de suministro mínima		Presión de máx	suministro kima	Presión de suministro normal o recomendada	
FSW	MSW	BAR PSIG		BAR	PSIG	BAR	PSIG
0-50	0-15,2	7	100	19,6	275	8,6	125
50-100	15,2-30,5	10,3	150	19,6	275	12	175
100-125	30,5-38	12	175	19,6	275	13,8	200
125-145	38-44	13,8	200	19,6	275	15,5	225
145-165	44-50,3	15,5	225	19,6	275	17,2	250
165-190	50,3-58	17,2	250	19,6	275	17,2	250

Cuando el buzo realiza tareas con un índice de esfuerzo de nivel leve a intenso (15 a 50 VRM), la presión mínima recomendada de suministro para la profundidad específica debería proporcionar el mejor rendimiento general. Solo debería ser necesario usar la presión máxima a una profundidad de 165 FSW (50 MSW) o más, si el buzo tiene un índice de esfuerzo respiratorio de 75 VRM o más.

La presión máxima de suministro se informa principalmente por requisito de la certificación europea CE, que exige incluir las presiones máximas y mínimas de suministro. Las presiones mínimas de suministro para las profundidades indicadas permitirán un índice de esfuerzo de 75 VRM según los requisitos de la certificación CE de la norma EN15333-1.

El rendimiento se basa en un mínimo de 75 VRM a 165 FSW (50 MSW) usando un umbilical de 3/8" (9,5 mm) y 600 pies (183 metros) de longitud compuesto de dos secciones de 300 pies (91,5 metros) cada una.

1.5 Tabla de presiones de suministro con un compresor de baja presión para reguladores SuperFlow® y SuperFlow® 350

Si se usa un compresor de baja presión, se deben cumplir estas presiones de suministro para cascos y máscaras con un regulador no compensado SuperFlow $^{\otimes}$ 350.

Duratión da acceletator	VDM	Profur	ndidad		SLPM	Margen de	SCFM
Presión de suministro	VRM	FSW	MSW	ATA	necesarios	seguridad (+20 %)	necesarios
90 psig o 6,21 bar	40	76	23	3,30	132,12	158,55	5,60
	50	63	19	2,91	145,45	174,55	6,17
	62,5	44	13	2,33	145,83	175,00	6,18
	75	33	10	2,00	150,00	180,00	6,36
100 psig o 6,9 bar	40	86	26	3,61	144,24	173,09	6,11
	50	72	22	3,18	159,09	190,91	6,74
	62,5	55	17	2,67	166,67	200,00	7,06
	75	42	13	2,27	170,45	204,55	7,23
110 psig o 7,59 bar	40	100	31	4,03	161,21	193,45	6,83
	50	83	25	3,52	175,76	210,91	7,45
	62,5	67	20	3,03	189,39	227,27	8,03
	75	50	15	2,52	188,64	226,36	8,00
		_		¥			
120 psig u 8,28 bar	40	112	34	4,39	175,76	210,91	7,45
	50	91	28	3,76	187,88	225,45	7,96
	62,5	71	22	3,15	196,97	236,36	8,35
	75	57	17	2,73	204,55	245,45	8,67

		Profu	ndidad		SLPM	Margen de	SCFM
Presión de suministro	VRM	FSW	MSW	ATA	necesarios	seguridad (+20 %)	necesarios
130 psig u 8,97 bar	40	122	37	4,70	187,88	225,45	7,96
	50	100	31	4,03	201,52	241,82	8,54
	62,5	82	25	3,48	217,80	261,36	9,23
	75	60	19	2,82	211,36	253,64	8,96
140 psig o 9,66 bar	40	137	42	5,15	206,06	247,27	8,73
<u> </u>	50	108	33	4,27	213,64	256,36	9,06
<u> </u>	62,5	84	26	3,55	221,59	265,91	9,39
	75	65	20	2,97	222,73	267,27	9,44
150 psig o 10,35 bar	40	145	44	5,39	215,76	258,91	9,15
	50	120	37	4,64	231,82	278,18	9,83
Ī	62,5	95	29	3,88	242,42	290,91	10,28
Ī	75	69	21	3,09	231,82	278,18	9,83
				-,		-,	
160 psig u 11,04 bar	40	157	48	5,76	230,30	276,36	9,76
	50	124	38	4,76	237,88	285,45	10,08
	62,5	100	31	4,03	251,89	302,27	10,68
	75	76	23	3,30	247,73	297,27	10,50
170 psig u 11,73 bar	40	167	51	6,06	242,42	290,91	10,28
	50	135	41	5,09	254,55	305,45	10,79
<u> </u>	62,5	107	33	4,24	265,15	318,18	11,24
	<u>75</u>	86	26	3,61	270,45	324,55	11,46
180 psig o 12,42 bar	40	181	55	6,48	259,39	311,27	11,00
<u> </u>	50	148	45	5,48	274,24	329,09	11,62
<u> </u>	62,5	115	35	4,48	280,30	336,36	11,88
	75	93	28	3,82	286,36	343,64	12,14
190 psig o 13,11 bar	40	190	58	6,76	270,30	324,36	11,46
	50	154	47	5,67	283,33	340,00	12,01
	62,5	122	37	4,70	293,56	352,27	12,44
	75	100	31	4,03	302,27	362,73	12,81
200 psig o 13,80 bar	40	192	59	6,82	272,73	327,27	11,56
200 psig 0 15,00 bai	50	166	51	6,03	301,52	361,82	12,78
	62,5	132	40	5,00	312,50	375,00	13,25
	75	102	31	4,09	306,82	368,18	13,01
						,	,
210 psig o 14,49 bar	40	212	65	7,42	296,97	356,36	12,59
	50	175	53	6,30	315,15	378,18	13,36
	62,5	137	42	5,15	321,97	386,36	13,65
	75	108	33	4,27	320,45	384,55	13,58
220 psig o 15,18 bar	40	220	67	7,67	306,67	368,00	13,00
	50	182	56	6,52	325,76	390,91	13,81
	62,5	147	45	5,45	340,91	409,09	14,45
 	75	111	34	4,36	327,27	392,73	
	/3	111	<u> </u>	טכ,ד ן	JLI,LI	J74/J	13,87

1.6 Tabla de presiones de suministro con una fuente regulada de alta presión para reguladores SuperFlow® y SuperFlow® 350

Profur	ndidad	Configuración en la super	guración del regulador Configu n la superficie (psig) en la		n del regulador erficie (bar)
FSW	MSW	Valor mínimo en psig	Valor máximo en psig	Valor mínimo en bar	Valor máximo en bar
0-60	0-18	150	225	10,3	15,5
61-100	19-30	200	250	13,8	17,2
101-132	31-40	250	275	17,2	18,9
133-165	41-50	250	300	17,2	19,6
*166-220	51-67	300	325	20,6	22,4

^{*}Podría no ser capaz de realizar actividades a 75 VRM a una profundidad mayor que 165 FSW.

El rendimiento se basa en un mínimo de 75 VRM a 165 FSW (50 MSW) y 62,5 VRM a 220 FSW (67 MSW) usando un umbilical de 3/8" (9,5 mm) y 600 pies (183 metros) de longitud compuesto de dos secciones de 300 pies (91,5 metros) cada una.

1.7 Tabla de presiones de suministro con un compresor de baja presión para reguladores REX®

Presión de suministro	VRM (Volumen respiratorio	Profundida recome		SCFM necesarios**	SLPM necesarios**
	por minuto)	FSW	MSW		
90 psig o 6,21 bar	40 (trabajo intenso)	104	32	7,0	198
	50 (trabajo intenso)	76	23	7,0	198
	62,5 (trabajo muy intenso)	61	18,8	7,5	212
	75 (trabajo muy intenso)	50	15,4	8,0	227
100 psig o 6,9 bar	40 (trabajo intenso)	l 108	33	l 725	l 205
100 psig 0 0,9 bai	50 (trabajo intenso)	90	27	7,25 7,9	203
	62,5 (trabajo muy intenso)	75	22,9	8,7	246
	75 (trabajo muy intenso)	59	18	8,9	252
	75 (trabajo fildy lifteriso)] 39	10	0,9	232
110 psig o 7,59 bar	40 (trabajo intenso)	117	35	7,7	218
	50 (trabajo intenso)	100	30	8,6	244
	62,5 (trabajo muy intenso)	83	25	9,3	263
	75 (trabajo muy intenso)	68	21	9,7	275
420	10 (toologie interes)	127	1 20.7		
120 psig u 8,28 bar	40 (trabajo intenso)	127	38,7	8,2	232
	50 (trabajo intenso)	113	34	9,4	266
	62,5 (trabajo muy intenso)	93	28	10	283
	75 (trabajo muy intenso)	75	23	9,7	275
130 psig u 8,97 bar	40 (trabajo intenso)	l 145	44	9,1	l 258
=== Pe.9 = e/ee.	50 (trabajo intenso)	125	38	10	283
	62,5 (trabajo muy intenso)	106	32	11	311
	75 (trabajo muy intenso)	85	26	11,36	322
				, , , , ,	1

Presión de suministro	VRM (Volumen respiratorio	Profundida recome		SCFM necesarios**	SLPM necesarios**
	por minuto)	FSW	MSW		
140 psig o 9,66 bar	40 (trabajo intenso)	160	48	10	283
	50 (trabajo intenso)	135	41	11	311
	62,5 (trabajo muy intenso)	114	35	12	340
	75 (trabajo muy intenso)	92,5	29	12	340
150 psig o 10,35 bar	40 (trabajo intenso)	170	52	10,5	297
	50 (trabajo intenso)	149	45	11,7	331
	62,5 (trabajo muy intenso)	126	38	13	368
	75 (trabajo muy intenso)	105	32	13,3	377
160 maig .: 11 04 hav	1 40 (trabaja intensa)	106	1 57	l 11.2	J 220
160 psig u 11,04 bar	40 (trabajo intenso)	186 157	57 48	11,3	320 345
	50 (trabajo intenso) 62,5 (trabajo muy intenso)	134	48	12,2 13,4	379
	75 (trabajo muy intenso)	112	34	13,4	396
	73 (trabajo muy intenso)	1 112) 11	14	ا عود
170 psig u 11,73 bar	40 (trabajo intenso)	203	62	12,2	l 345
170 paig u 11,75 bai	50 (trabajo intenso)	170	52	13	368
	62,5 (trabajo muy intenso)	143	43	14	396
	75 (trabajo muy intenso)	121	37	14,9	422
	, o (a a a a jo ma , mac			/-	
180 psig o 12,42 bar	40 (trabajo intenso)	219	67	l 13	J 368
. 5 /	50 (trabajo intenso)	180	55	13,7	388
	62,5 (trabajo muy intenso)	158	48	15,4	436
	75 (trabajo muy intenso)	130	39	15,7	445
		•	•	,	
190 psig o 13,11 bar	40 (trabajo intenso)	220	67	13	368
	50 (trabajo intenso)	192	58	14,5	411
	62,5 (trabajo muy intenso)	165	50	16	453
	75 (trabajo muy intenso)	141	43	16,8	476
		,			
200 psig o 13,80 bar	40 (trabajo intenso)	220	67	13	368
	50 (trabajo intenso)	205	62	15,3	433
	62,5 (trabajo muy intenso)	174	53	16,7	473
	75 (trabajo muy intenso)	147	45	17,4	493
210 poig o 14 40 hor	40 (trabaja intanas)	1 220	67	l 12	1 260
210 psig o 14,49 bar	40 (trabajo intenso) 50 (trabajo intenso)	220 214	67 65,8	13 16	368 453
	62,5 (trabajo intenso)	186	56	17,6	498
	75 (trabajo muy intenso)	159	48	18,5	524
	7.5 (trabajo filay lifteriso)	l 139	10	1 10,5	J J J J T
220 psig o 15,18 bar	40 (trabajo intenso)	220	67	13	368
po.g o 10/10 pui	50 (trabajo intenso)	220	67	16,3	462
	62,5 (trabajo muy intenso)	194	59	18,2	515
	75 (trabajo muy intenso)	165	50	19	538

Estos valores provienen de pruebas reales realizadas por Dive Lab, Inc., con un simulador húmedo ANSI de respiración y un umbilical de 600 pies (183 metros) y diámetro interior de 3/8" (9,5 mm). Los índices de esfuerzo y procedimientos de prueba utilizados han sido reconocidos a nivel internacional.

^{**}Incluye un factor de seguridad del 20 %.

La mayoría de los buzos profesionales mantienen un índice de esfuerzo de entre 20 y 40 VRM. KMDSI® recomienda calcular la presión de suministro usando un valor igual o mayor que 40 VRM.

Para obtener más información, consulte el sitio web de Dive Lab www.divelab.com.

1.8 Tabla de presiones de suministro con una fuente regulada de alta presión para reguladores REX®

Profun	didad	Presió regulado		Presión del regulador en bar		
FSW	MSW	Valor óptimo en psig	Valor máximo en psig	Valor óptimo en bar	Valor máximo en bar	
0-60	0-18	140	200	9,7	13,8	
61-100	19-30	165	220	11,4	15	
101-132	31-40	180	250	12,4	17	
133-165	41-50	220	300	15	20,7	
166-220	51-67	270	300	18,6	20,7	

El rendimiento se basa en un mínimo de $75~\rm{VRM}$ a $220~\rm{FSW}$ ($67~\rm{MSW}$) usando un umbilical de 3/8" ($9.5~\rm{mm}$) y $600~\rm{pies}$ ($183~\rm{metros}$) de longitud compuesto de dos secciones de $300~\rm{pies}$ ($91.5~\rm{metros}$) cada una.

1.9 Tabla de presiones de suministro con un compresor de baja presión para reguladores 455 y de cascos KM Diamond

Presión de suministro	VRM (Volumen respiratorio	máx	ndidad kima endada	ATA	SLPM necesarios	Margen de seguridad	SCFM necesarios
	por minuto)	FSW	MSW	1		(+20 %)	110000
	40 (trabajo intenso)	101	30	4,06	162,42	194,91	6,88
	50 (trabajo intenso)	84	25	3,55	177,27	212,73	7,51
90 psig o 6,21 bar	62,5 (trabajo muy intenso)	66	20	3,00	187,50	225,00	7,95
	75 (trabajo muy intenso)	51	16	2,55	190,91	229,09	8,09
	40 (trabajo intenso)	115	35	4,48	179,39	215,27	7,60
	50 (trabajo intenso)	97	29	3,94	196,97	236,36	8,35
100 psig o 6,9 bar	62,5 (trabajo muy intenso)	77	23	3,33	208,33	250,00	8,83
	75 (trabajo muy intenso)	62	19	2,88	215,91	259,09	9,15
	40 (trabajo intenso)	130	l 39	4,94	197,58	237,09	8,37
	50 (trabajo intenso)	100	30	4,03	201,52	241,82	8,54
110 psig o 7,59 bar	62,5 (trabajo muy intenso)	90	27	3,73	232,95	279,55	9,87
	75 (trabajo muy intenso)	73	22	3,21	240,91	289,09	10,21
	40 (trabajo intenso)	145	l 44	5,39	215,76	258,91	9,15
	50 (trabajo intenso)	125	38	4,79	239,39	287,27	10,15
120 psig u 8,28 bar	62,5 (trabajo muy intenso)	101	30	4,06	253,79	304,55	10,76
	75 (trabajo muy intenso)	83	25	3,52	263,64	316,36	11,17
							•

Presión de suministro	VRM (Volumen respiratorio	máx	ndidad xima endada	ATA	SLPM necesarios	Margen de seguridad	SCFM necesarios
541111115615	por minuto)	FSW	MSW	1	l ilicocoai ilos	(+20 %)	necesarios
	40 (trabajo intenso)	157	47	5,76	230,30	276,36	9,76
	50 (trabajo intenso)	130	39	4,94	246,97	296,36	10,47
130 psig u 8,97 bar	62,5 (trabajo muy intenso)	110	33	4,33	270,83	325,00	11,48
	75 (trabajo muy intenso)	91	28	3,76	281,82	338,18	11,95
	40 (trabajo intenso)	171	J 52	6,18	247,27	296,73	10,48
	50 (trabajo intenso)	145	44	5,39	269,70	323,64	11,43
140 psig o 9,66 bar	62,5 (trabajo muy intenso)	120	36	4,64	289,77	347,73	12,28
	75 (trabajo muy intenso)	103	31	4,12	309,09	370,91	13,10
	40 (trabajo intenso)	187	 57	6,67	266,67	320,00	11,30
	50 (trabajo intenso)	158	48	5,79	289,39	347,27	12,27
150 psig o 10,35 bar	62,5 (trabajo muy intenso)	134	41	5,06	316,29	379,55	13,41
	75 (trabajo muy intenso)	103	31	4,12	309,09	370,91	13,10
	1 40 (trabajo intenco) 1	198	60	l 700	280,00	336,00	11,87
	40 (trabajo intenso) 50 (trabajo intenso)	176	54	7,00	316,67	380,00	13,42
160 psig	62,5 (trabajo muy	147	45	5,45	340,91	409,09	14,45
u 11,04 bar	intenso) 75 (trabajo muy			<u> </u>	<u> </u>	,	
	intenso)	125	38	4,79	359,09	430,91	15,22
	40 (trabajo intenso)	203	61	7,15	286,06	343,27	12,13
	50 (trabajo intenso)	183	56	6,55	327,27	392,73	13,87
170 psig u 11,73 bar	62,5 (trabajo muy intenso)	154	47	5,67	354,17	425,00	15,01
	75 (trabajo muy intenso)	125	38	4,79	359,09	430,91	15,22
	40 (trabajo intenso)	230	70	7,97	318,79	382,55	13,51
	50 (trabajo intenso)	196	60	6,94	346,97	416,36	14,71
180 psig o 12,42 bar	62,5 (trabajo muy intenso)	163	50	5,94	371,21	445,45	15,73
	75 (trabajo muy intenso)	144	44	5,36	402,27	482,73	17,05
	1 40 (trabajo intenso)	239	70	0.24	1 220 70] 20E 64	12.00
	40 (trabajo intenso) 50 (trabajo intenso)	196	73	8,24 6,94	329,70 346,97	395,64 416,36	13,98 14,71
190 psig o 13,11 bar	62,5 (trabajo muy intenso)	173	53	6,24	390,15	468,18	16,54
,	75 (trabajo muy intenso)	152	46	5,61	420,45	504,55	17,82
		201		. 700		. 240.26	12.02
	40 (trabajo intenso)	201 220	61	7,09 7,67	283,64 383,33	340,36 460,00	12,02 16,25
200 psig	50 (trabajo intenso)		†			<u> </u>	
o 13,80 bar	62,5 (trabajo muy intenso) 75 (trabajo muy	187	57	6,67	416,67	500,00	17,66
	intenso)	156	48	5,73	429,55	515,45	18,21

Presión de suministro	VRM (Volumen respiratorio	imen maxima recomendada A		ATA	SLPM necesarios	Margen de seguridad	SCFM necesarios
	por minuto)	FSW	MSW			(+20 %)	
	40 (trabajo intenso)	273	83	9,27	370,91	445,09	15,72
	50 (trabajo intenso)	237	72	8,18	409,09	490,91	17,34
210 psig o 14,49 bar	62,5 (trabajo muy intenso)	201	61	7,09	443,18	531,82	18,79
	75 (trabajo muy intenso)	172	52	6,21	465,91	559,09	19,75
	40 (trabajo intenso)	245	75	8,42	336,97	404,36	14,28
	50 (trabajo intenso)	203	62	7,15	357,58	429,09	15,16
220 psig o 15,18 bar	62,5 (trabajo muy intenso)	194	59	6,88	429,92	515,91	18,22
	75 (trabajo muy intenso)	181	55	6,48	486,36	583,64	20,62

1.10 Tabla de presiones de suministro con una fuente regulada de alta presión para reguladores 455

Profundidad		Presió regulador		Presión del regulador en bar		
FSW	MSW	Valor óptimo en psig	Valor máximo en psig	Valor óptimo en bar	Valor máximo en bar	
0-60	0-18	100	150	7	10	
61-100	19-30	125	150	8,6	10,3	
101-132	31-40	175	225	12	15,5	
133-165	41-50	200	250	14	17	
166-190	51-61	225	275	15,5	19	
191-220	58-67	225	300	15,5	20,6	

El rendimiento se basa en un mínimo de 75 VRM a 220 FSW (67 MSW) usando un umbilical de 3/8" (9,5 mm) y 600 pies (183 metros) de longitud compuesto de dos secciones de 300 pies (91,5 metros) cada una.

1.11 Tabla de presiones de suministro con una fuente regulada de alta presión para reguladores de cascos KM Diamond

Profundidad			Presión de regulador en		Presión del regulador en bar			
FSW	MSW	Valor Valor mínimo máximo en psig en psig		Valor recomendado en psig	Valor mínimo en bar	Valor máximo en bar	Valor recomendado en bar	
0-60	0-18	101	275	145	7	19	10	
61-100	19-30	145	275	174	10	19	12	
101-132	31-40	174	275	203	12	19	14	
133-165	41-50	218	275	245	15	19	17	

Una presión de suministro adecuada es importante para garantizar el mejor rendimiento posible de respiración. Estas presiones de suministro mínimas y máximas recomendadas permiten un índice de esfuerzo respiratorio de al menos 75 VRM en todas las profundidades indicadas.

Cuando el buzo realiza tareas con un índice de esfuerzo de nivel leve a intenso (15 a 50 VRM), la presión mínima recomendada de suministro para la profundidad específica debería proporcionar el mejor rendimiento general. Solo debería ser necesario usar la presión máxima a una profundidad de 165 FSW (50 MSW) o más, si el buzo tiene un índice de esfuerzo respiratorio de 75 VRM o más. La presión máxima de suministro se informa principalmente por requisito de la certificación europea CE, que exige incluir las presiones máximas y mínimas de suministro. Las presiones mínimas de suministro para las profundidades indicadas permitirán un índice de esfuerzo de 75 VRM según los requisitos de la certificación CE de la norma EN15333-1.

1.12 Fórmula estándar de Kirby Morgan para calcular la presión de suministro en superficie (método antiguo)

1.12.1 Cálculo antiguo para la tabla de presiones

El método antiguo para determinar la presión de suministro consiste en multiplicar la profundidad de la inmersión por 0,455 psi y sumar la presión sobre el fondo correspondiente a los rangos de presión que figura en el manual de operaciones de KMDSI correspondiente. Esta fórmula asume un VRM mínimo de 62,5. Es posible seguir usando este método, que utiliza las presiones sobre el fondo de la tabla siguiente de esta manera: (FSW \times 0,445) + (psig a esa profundidad).

Profundidad e	n pies y en metros	Presión sobre el fondo
0-60 FSW	(0-18 MSW)	90 psig (6,2 bar)
61-100	(18-30)	115 (7,9)
101-132	(30-40)	135 (9,3)
133-165	(40-50)	165 (11,4)
166-220	(50-67)	225 (15,5)

Para obtener más información sobre cómo determinar la presión de suministro, consulte el sitio web de Dive Lab www.divelab.com.

1.13 Tabla de flujo de contrapresión de escape del KM Diamond

1.13.1 Sistema de contrapresión

Cuando la línea de retorno a la superficie del KM Diamond alcanza una profundidad de 90 a 100 FSW (27 a 30,48 MSW), la combinación de presión diferencial y densidad del aire empiezan a tener un impacto importante en el esfuerzo de exhalación si el índice de esfuerzo respiratorio está por encima de 60 VRM. El aumento de esfuerzo respiratorio a profundidades superiores a 100 FSW (30,48 MSW) se debe principalmente a la gran diferencia de presión entre el diafragma de escape de la segunda etapa y la presión inferior en la superficie. Además, se genera una resistencia al flujo en la manguera de retorno a la superficie, debido a la densidad del gas.

Para compensar el aumento de densidad del gas y la alta presión diferencial, el extremo en la superficie de la manguera de retorno se conecta a un sistema de regulador de contrapresión, que permite ejercer una contrapresión en la manguera, para disminuir esta presión diferencial. De esta manera, la segunda etapa del regulador de escape funciona con menos esfuerzo de exhalación.

La cantidad de contrapresión desde la superficie depende de lo que necesite el buzo para poder respirar y exhalar a un índice superior a 60 VRM, sin que la presión de exhalación del casco se eleve por encima de 18 mbar. Para determinar la contrapresión necesaria, se usa una tabla diseñada especialmente. Consulte la tabla en la sección 1.12.4, página APNDX-14.

Se recomienda usar un sistema de contrapresión y su correspondiente tabla siempre que el buzo tenga que hacer tareas que demanden un índice de esfuerzo intenso, a una profundidad mayor que 100 FSW (30,48 MSW). El objetivo es mantener la presión de exhalación por debajo del límite recomendado por KMDSI de 18 mbar y evitar que el gas escape por la válvula de sobrepresión y las válvulas de purga de agua en el casco. Exhalar gas en un entorno de agua contaminada no es recomendable e invalida el objetivo principal de usar un casco con línea de retorno con descarga en la superficie. Si usa un sistema de contrapresión en la superficie, evitará la activación involuntaria de estas válvulas en el KM Diamond.

1.13.1.1 Funcionamiento del sistema de contrapresión de escape a la superficie

Requisitos mínimos del sistema de contrapresión de escape a la superficie:

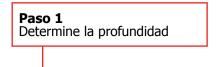
- Dispositivo para sujetar a la unidad la manguera de escape del buzo principal y la manguera del buzo en espera.
- Un medidor de flujo por buzo.
- · Dispositivo para aumentar y disminuir la contrapresión de escape.

Para el rendimiento óptimo del escape (es decir, el menor esfuerzo de exhalación), la contrapresión de escape a la superficie se ajusta según la lectura del medidor de flujo en uso y la profundidad de los buzos. Por ejemplo, si un buzo a 100 FSW (30,48 MSW) de profundidad trabaja con un índice de esfuerzo respiratorio extremo de 60 VRM o más sin contar con un sistema de control de contrapresión en la superficie, la presión de exhalación se encontraría entre 14 y 16 mbar. Si se compensara con la contrapresión adecuada, la presión de exhalación bajaría a un valor de entre 6 y 8 mbar.

El sistema de control de escape en la superficie debe poder controlar la presión de escape según la profundidad y el índice de esfuerzo respiratorio. Un ejemplo de sistema de contrapresión en la superficie es el DL-TSC-00 de Dive Lab, Inc. Este sistema admite dos buzos y está compuesto por un conjunto de colector simple con regulador de contrapresión, dos medidores de flujo (con válvulas de cierre) y dos manómetros de 0 a 100 psig. Las mangueras de escape de los buzos se conectan al sistema de escape en la superficie por medio de un conector rápido de latón de 1/2". El escape se conecta al regulador de contrapresión ajustable y se regula según la profundidad y el índice de esfuerzo respiratorio de los buzos, como lo indiquen los medidores de flujo.

Además, el sistema de medidores de flujo permite calcular el esfuerzo respiratorio de los buzos, un dato que puede ser útil en la planificación del consumo de aire. Para minimizar la posibilidad de escape de gas por la válvula de sobrepresión y el conjunto de purga de agua, se debe comenzar la inmersión sin ningún tipo de contrapresión e ir ajustando la contrapresión óptima según la profundidad y el flujo, para lograr el menor esfuerzo de exhalación.

1.13.1.2 Cómo calcular el esfuerzo respiratorio


Como ya se mencionó, el sistema de escape de contrapresión desde la superficie no es necesario para reducir la presión de escape a profundidades menores que 100 FSW (30.48 MSW). Sin embargo, según el índice de esfuerzo respiratorio del buzo, puede empezar a usarse a partir de los 30 FSW (9,1 MSW) para controlar el VRM del buzo.

Por ejemplo, si un buzo se encuentra a 60 FSW (18 MSW), el flujo de escape en el medidor de flujo muestra un rango entre 75 y 95 LPM. El operador de la consola revisa la tabla de escape y escoge la profundidad más cercana a la profundidad actual del buzo y el valor alto del flujo. Luego, ajusta la contrapresión del regulador según la medición en la tabla. Con el medidor de flujo mostrando un valor entre 75 y 95 LPM, tome el valor alto, 95 LPM y divídalo por la profundidad en ATA (2,8) para obtener el índice de esfuerzo respiratorio del buzo, también conocido como VRM. Esta es la fórmula:

Profundidad (60 FSW + 33 FSW) \div 33 = 2,8 ATA.

(95 LPM ÷ 2,8 ATA) = 33,9 VRM. El resultado es el esfuerzo respiratorio del buzo, 33,9 VRM, que se considera dentro de la categoría de trabajo intenso.

1.13.2 Instrucciones

Paso 3
Identifique la medición más cercana en la tabla

110	33,5	3,3 4 ,33	Flujo en LPM	45-65	85-110	115-150	150-185	180-235	230-290	280-350
			CP (psig)	26-28	30-32	31-35	32-36	34-39	36-41	37-41

Paso 2
Tome la lectura promedio de su medidor de flujo. En el ejemplo, se encuentra entre 180 y 210. El flujo promedio es 195.

Paso 4
Contrapresión recomendada
del regulador

1.13.3 Abreviaturas y fórmulas

Abreviaturas

ATA: atmósferas absolutas

FSW: pies de agua salada LPM: litros por minuto

MSW: metros de agua salada

VRM: volumen respiratorio por

minuto

Fórmulas

 $(Profundidad + 33) \div 33 = ATA$

 $FSW \div 3.28 = MSW$

 $\mathsf{LPM}\,\div\,\mathsf{ATA}=\mathsf{VRM}$

Para calcular el VRM con la mayor precisión, simplemente sume la medición más alta y la medición más baja y divida el resultado por 2. Tome el resultado y divídalo por la profundidad (en ATA) del buzo.

1.13.4 Tabla

FSW	MSW	АТА	CP: Contrapresión (psig) LPM: Litros por minuto	VRM 10-15	VRM 20-24	VRM 30-34	VRM 37-40	VRM 48-50	VRM 60-63	VRM 73-75
10	10 3	1,3	Flujo en LPM	n/c*	n/c*	n/c*	40-60	35-90	55-105	70-120
10	3	1,3	CP (psig)	n/c*	n/c*	n/c*	1-2	1-2	1-2	1-2
20	0 6 00	1.0	Flujo en LPM	n/c*	n/c*	35-65	40-80	55-100	80-120	105-135
20	6,09	1,6	CP (psig)	n/c*	n/c*	1-2	1-2	1-2	2-3	3-5
30	9,1	1,9	Flujo en LPM	n/c*	30-55	50-75	55-90	75-110	100-130	115-160
30	9,1	1,9	CP (psig)	n/c*	1-2	2-3	2-3	3-4	3-5	4-6
40	12.2	2 21	Flujo en LPM	10-40	40-60	45-80	70-95	90-125	120-150	140-180
40	12,2	2,21	CP (psig)	2-3	3-4	4-5	4-6	5-7	6-8	7-9
F0	15.2	2 51	Flujo en LPM	15-45	50-70	70-85	85-105	110-135	140-170	170-200
50	15,2	2,51	CP (psig)	3-4	4-6	5-7	5-8	7-9	8-13	9-13
	10.2	2.02	Flujo en LPM	25-45	55-70	75-95	95-120	125-150	155-185	190-230
60	18,3	2,82	CP (psig)	5-7	7-9	9-10	9-12	11-14	11-14	15-18
70	24.2	3,12	Flujo en LPM	30-45	65-80	85-105	110-130	135-170	170-210	200-250
/0	70 21,3		CP (psig)	7-8	10-13	13-14	13-17	15-18	15-20	16-20
00	80 24,4	3,42	Flujo en LPM	35-50	70-85	90-110	120-145	150-190	185-225	225-275
80			CP (psig)	11-13	14-16	16-18	17-19	18-22	20-23	21-24
00	00 27.4	3,72	Flujo en LPM	35-55	75-95	100-125	125-155	150-200	200-245	245-300
90	27,4		CP (psig)	17-20	21-24	22-25	24-28	26-30	27-31	27-33
100	20.5	4,03	Flujo en LPM	40-60	80-105	110-135	135-170	170-220	220-260	260-330
100	30,5		CP (psig)	22-24	25-28	28-31	28-32	29-33	33-36	31-37
110	22 E	4,33	Flujo en LPM	45-65	85-110	115-150	150-185	180-235	230-290	280-350
110	33,5		CP (psig)	26-28	30-32	31-35	32-36	34-39	36-41	37-41
120	26.6	36,6 4,63	Flujo en LPM	56-65	90-120	120-155	150-200	200-250	250-320	300-380
120	30,0		CP (psig)	29-32	32-35	34-37	35- 4 0	37- 4 3	39-44	39- 4 5
120	20.6	,6 4,93	Flujo en LPM	50-75	95-130	130-170	165-210	210-270	270-340	320-400
130	39,6		CP (psig)	32-35	36-40	39-42	39-43	42-47	44-48	44-50
140	42.7	5,24	Flujo en LPM	55-80	100-135	145-170	170-220	220-290	280-350	340-425
140	42,7		CP (psig)	33-35	38-41	40-44	42-45	43-48	45-50	45-51
150	46	46 5,55	Flujo en LPM	55-80	110-145	145-190	170-240	230-310	300-380	355-450
150	46		CP (psig)	37-40	41-44	44-47	43-49	47-51	50-56	50-57
160	40	5,84	Flujo en LPM	55-75	110-150	150-195	190-250	240-320	310-390	370-470
160	49		CP (psig)	38-41	42-45	43-45	45-50	48-51	49-54	51-58
165	F0 2	6	Flujo en LPM	60-85	115-155	155-205	195-260	245-330	320-410	380-480
165	50,3		CP (psig)	41-43	44-48	47-50	49-53	50-55	53-59	54-60

 $^{^*\}mbox{A}$ esta profundidad y VRM, no se puede determinar con precisión el flujo.